# SVILVER

#### Simplifying Progress

#### OPLS<sup>®</sup> in Process Modeling

Lennart Eriksson, Ph.D., Assoc. Prof. Senior Lecturer and Principal Data Scientist



#### Born in Data Analytics



- Company founded in 1987 by Professor Svante Wold, in Umeå, Sweden
  - Originator of Chemometrics and the SIMCA<sup>®</sup> Methodology
- Patented technologies in Design of Experiments and Multivariate Data Analysis

- We help our customers bring high-quality products to market faster
- Part of Sartorius Stedim Biotech since April 2017
- Products like MODDE<sup>®</sup>, SIMCA<sup>®</sup> and SIMCA<sup>®</sup>-online
- Global strength with local presence



#### Business Growth Through the Entire Product Lifecycle

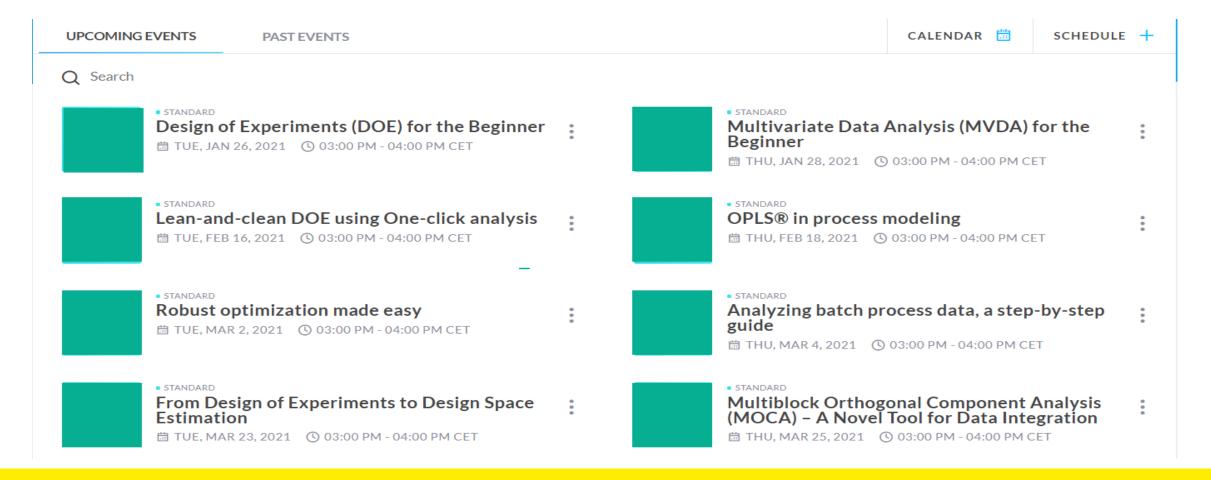
Active Dashboard Interactive performance insight

Control Advisor Avoid problems before they arise

MODDE<sup>®</sup> Get it right from the start

#### SIMCA<sup>®</sup> Turn data into growth

SIMCA<sup>®</sup>-online Ensured manufacturing success


**Umetrics<sup>®</sup>** Suite

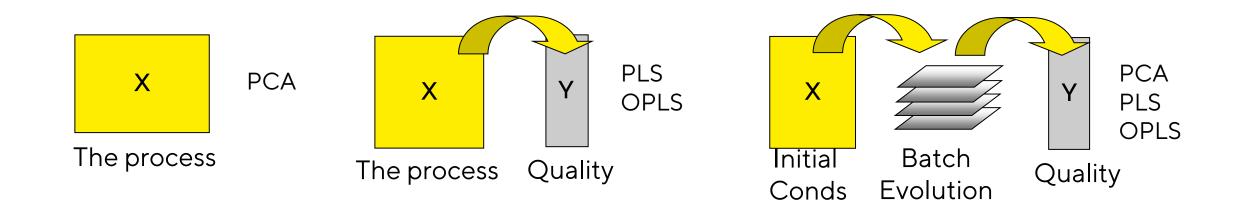
Education/training and consulting Transferring expertise to you



Umetrics<sup>®</sup> Suite of Data Analytics Solution MODDE<sup>®</sup> Design of Experiments Solution SIMCA<sup>®</sup> Multivariate Data Analysis Solution SIMCA<sup>®</sup>-online Solution

# Upcoming Webinars (https://www.sartorius.com/en/company/exhibition-conferences)

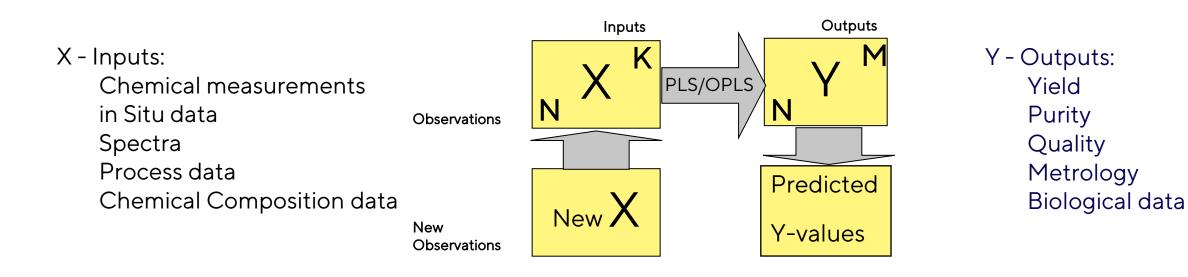





#### Multivariate Process Data

- Monitoring a process
  - Early warning of disturbances
  - Diagnostics finding "assignable causes"

- Modelling a process output
- Monitor Quality of final product


- Modelling Batch Processes
  - Majority of industrial processes
  - More complex analysis

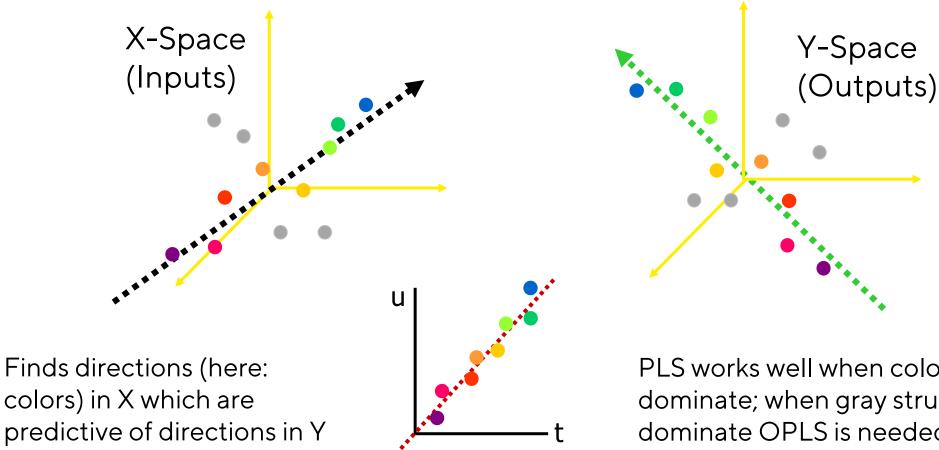




#### Schematic View of the Regression Problem

• Find relationships between sets of multivariate data X and Y






#### Introduction to PLS/OPLS

- Relationships between two blocks of data (often called X and Y) can be explored by regression extensions of PCA, i.e. PLS and OPLS
- PLS (= Partial Least Squares) was originated around 1975
  Refined around 1982-83
- An improvement called OPLS (= Orthogonal PLS) was presented 2002
  - OPLS offers enhanced model interpretation
  - PLS and OPLS models for single-Y are identical wrt to prediction



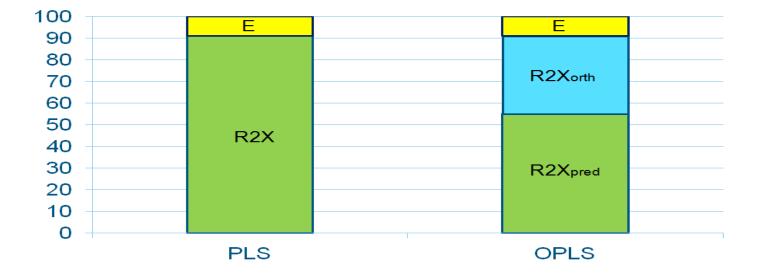
**Projection-Based Regression Modeling** 



PLS works well when colored structures dominate; when gray structures dominate OPLS is needed to filter it out

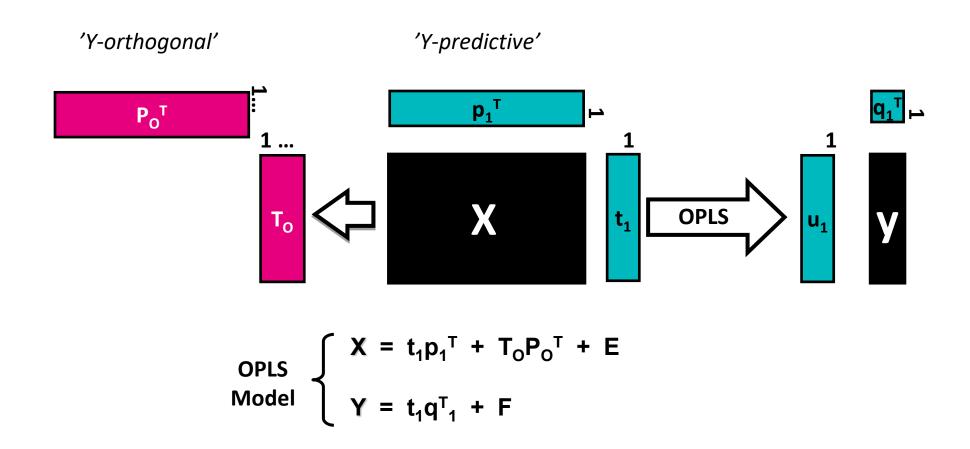
#### SVIECTEX

#### Orthogonal-PLS (OPLS)


- A rotation or "transformation" of the PLS solution
  - OPLS and PLS models with single-Y and same number of components are equivalent; same predictive power






#### **OPLS** Terminology

- PLS divides the variability in the X-matrix in two parts, the systematic variability and the residual variability.
- OPLS further splits the systematic variability, R2X, in two parts, the part that is correlated (predictive) to Y and the part that is uncorrelated (orthogonal) to Y.





OPLS Model Structure (Single-Y)

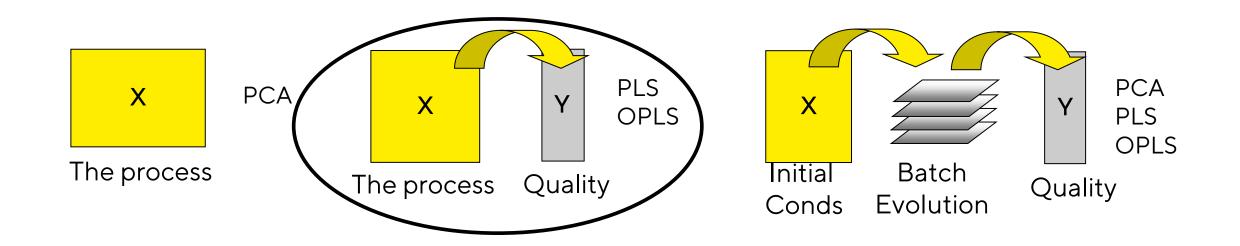




#### Example: Binary Powder I

- Mixing two powders with similar particle sizes which represents a common situation in pharmaceutical production
  - The two model powders are lactose and salicylic acid.
- Sample mixtures were prepared using salicylic acid/lactose mixtures in the range 45/55% (w/w) to 55/45% (w/w).

 Main reference: O Berntsson, LG Danielsson, MO Johansson, and S Folestad, Quantitative determination of content in binary powder mixtures using diffuse reflectance near infrared spectrometry and multivariate data analysis. Analytica Chimica Acta, 419 (2000) 45-54.




#### Multivariate Process Data

- Monitoring a process
  - Early warning of disturbances
  - Diagnostics finding "assignable causes"

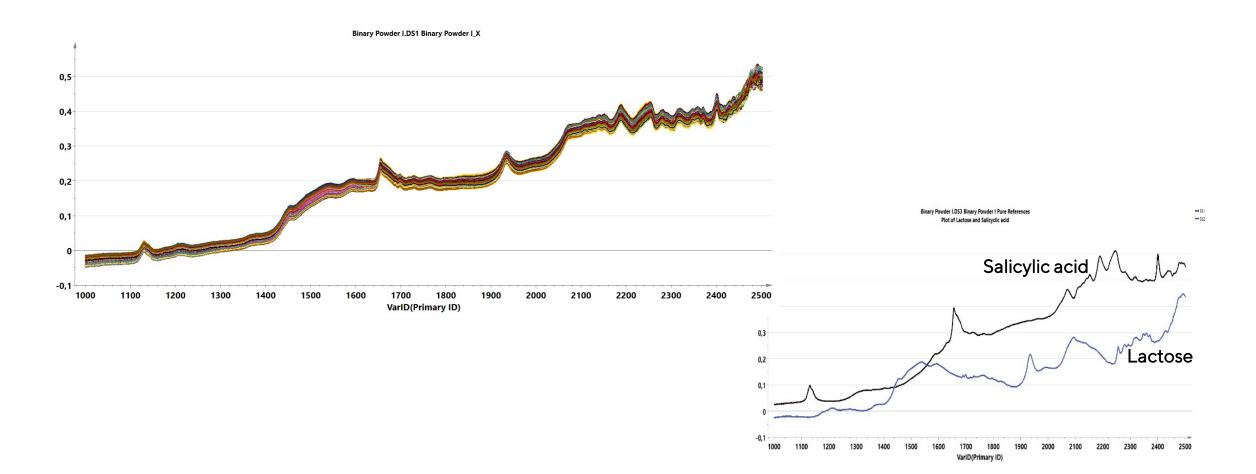
- Modelling a process output
- Monitor Quality of final product

- Modelling Batch Processes
  - Majority of industrial processes
  - More complex analysis





Data


- The data consists of 12 batches of powders with salicylic acid content ranging from 45% to 55%.
  - 6 batches used as training set and 6 batches used as test set
- For each batch, 40 NIR spectra were acquired by holding the fibre-optic probe against the powder surface in 40 randomly chosen positions.
  - 12\*40 = 480 observations; divided 240/240
- NIR spectra were obtained as log (1/R) in the 1000-2500nm range giving a total of 1558 X-variables.







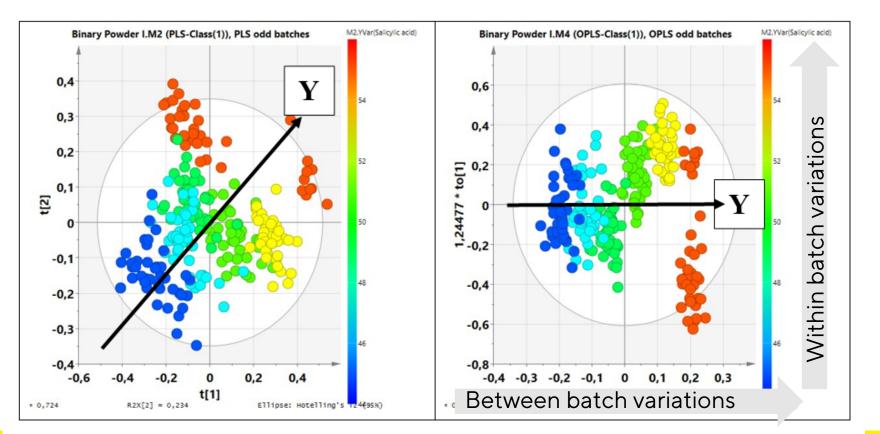
#### Spectra of Training Set Samples



**SVISCISVS** 

#### **OPLS Model**

- The PLS and OPLS models have identical performance
- However, the additional insight provided by the OPLS model is that only 22% of the variation in the NIR data is connected to the variation in the levels of salicyclic acid
- 77% of NIR variance systematic but not predictive to Y


|                                                                                                                                                       |                                                                     |                                                                                                            | OPLS odd bate                                                                  |                                                               |                                                                                               |                                        |                                     |                                  |                            |                                                  |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|----------------------------------|----------------------------|--------------------------------------------------|------|
|                                                                                                                                                       | otions                                                              |                                                                                                            |                                                                                |                                                               |                                                                                               |                                        |                                     |                                  |                            |                                                  |      |
| e: OPLS-Class(1)                                                                                                                                      | Observa                                                             | itions (N)=240                                                                                             | , variables (K)=                                                               | =1559 (X=                                                     | =1558, Y=1)                                                                                   |                                        |                                     |                                  |                            |                                                  |      |
| mponent                                                                                                                                               |                                                                     | R X R2X(c                                                                                                  | m) Eigenvalu                                                                   | ie R2 🥤                                                       | Nz(cum Q2                                                                                     | Limit (                                | Q2(cum)                             | R2Y R2Y(cu                       | m) EigenvalueY             | Significance                                     |      |
| Model                                                                                                                                                 |                                                                     | 0,989                                                                                                      |                                                                                |                                                               | 0,972                                                                                         | 0                                      | ,956                                | 1                                |                            |                                                  |      |
|                                                                                                                                                       |                                                                     |                                                                                                            |                                                                                |                                                               |                                                                                               |                                        |                                     |                                  |                            |                                                  |      |
| Predictive                                                                                                                                            |                                                                     | 0,22                                                                                                       |                                                                                |                                                               | 0,972                                                                                         | 0                                      | ,956                                | 1                                |                            |                                                  |      |
| L P1                                                                                                                                                  |                                                                     | 0,22 0,22                                                                                                  | 52,8                                                                           | 0,972                                                         | 0,972 0,956                                                                                   | 0,01 0                                 | ,956                                | 1 1                              | 1                          | R1                                               |      |
| 0.0                                                                                                                                                   | VIOD                                                                | 0.700                                                                                                      |                                                                                |                                                               | 0                                                                                             |                                        |                                     |                                  |                            |                                                  |      |
| Orthogonal in 2<br>01                                                                                                                                 | х(ОР                                                                | 0,769<br>0,6 0,699                                                                                         | 168                                                                            |                                                               | 0                                                                                             |                                        |                                     |                                  |                            | R1                                               |      |
| - 02                                                                                                                                                  |                                                                     | 0,0 0,743                                                                                                  | 10.4                                                                           | -                                                             | 0                                                                                             |                                        |                                     |                                  |                            | R1                                               |      |
| - 03                                                                                                                                                  |                                                                     | 0,0 0,753                                                                                                  | 2,52                                                                           | 0                                                             | 0                                                                                             |                                        |                                     |                                  |                            | R1                                               |      |
| - 04                                                                                                                                                  |                                                                     | 0,0 0,761                                                                                                  | 1,78                                                                           | 0                                                             | 0                                                                                             |                                        |                                     |                                  |                            | R1                                               |      |
| - 05                                                                                                                                                  |                                                                     | 0,0 0,765                                                                                                  | 0.959                                                                          | 0                                                             | 0                                                                                             |                                        |                                     |                                  |                            | R1                                               |      |
|                                                                                                                                                       |                                                                     | 0,0 0,705                                                                                                  | 0,000                                                                          | ·                                                             | •                                                                                             |                                        |                                     |                                  |                            |                                                  |      |
| Binary Pov                                                                                                                                            | wder                                                                | 0,0 0,769                                                                                                  | 0,945                                                                          |                                                               | 0                                                                                             |                                        |                                     |                                  |                            | R1                                               | • X  |
| Binary Pov                                                                                                                                            |                                                                     | 0,0 0,769<br>I - M2                                                                                        | 0,945                                                                          | 0                                                             | 0                                                                                             |                                        |                                     |                                  |                            |                                                  | = X3 |
| Binary Pov                                                                                                                                            | Opt                                                                 | 0,0 0,769                                                                                                  | 0,945<br>Title: Pl                                                             | 0<br>LS odd t                                                 | o<br>oatches                                                                                  |                                        |                                     |                                  |                            |                                                  | = X3 |
| Binary Pov                                                                                                                                            | Opt                                                                 | 0,0 0,769                                                                                                  | 0,945<br>Title: Pl                                                             | 0<br>LS odd t                                                 | o<br>oatches                                                                                  | 1558, 1                                | (=1)                                |                                  |                            |                                                  | • *  |
| Binary Pov<br>Workset<br>pe: PLS-Class(                                                                                                               | Opt<br>(1) Ob                                                       | 0,0 0,769                                                                                                  | 0,945<br>Title: Pl<br>(N)=240, va                                              | 0<br>LS odd b<br>ariables                                     | o<br>batches<br>(K)=1559 (X=                                                                  |                                        | · ·                                 | 024                              | 6° 17                      |                                                  | • ** |
| 06<br>Binary Pov<br>Workset<br>pe: PLS-Class(                                                                                                         | Opt<br>(1) Ob<br>R2X                                                | 0,0 0,769                                                                                                  | 0,945<br>Title: Pl<br>(N)=240, va                                              | 0<br>LS odd b<br>ariables                                     | o<br>oatches                                                                                  |                                        | · ·                                 | Q2(cum)                          | Significance               |                                                  |      |
| 06<br>Binary Pov<br>Workset<br>pe: PLS-Class(<br>Component F                                                                                          | Opt<br>(1) Ob<br>R2X<br>Cent.                                       | 0,0 0,769<br>I - M2<br>ions<br>servations (<br>R2X(cum)                                                    | 0,945<br>Title: Pl<br>(N)=240, va<br>Eigenvalu                                 | 0<br>LS odd b<br>ariables<br>re R2Y                           | o<br>batches<br>(K) = 1559 (X =<br>R2Y(cum                                                    | Q2                                     | Limit                               |                                  | -                          | Lerations                                        |      |
| Binary Pov<br>Workset<br>pe: PLS-Class(<br>Component F                                                                                                | Opt<br>(1) Ob<br>R2X<br>Cent.<br>),724                              | 0,0 0,769<br>I - M2<br>ions<br>servations (<br>R2X(cum)<br>0,724                                           | 0,945<br>Title: Pl<br>(N)=240, va<br>Eigenvalu<br>174                          | 0<br>LS odd b<br>ariables<br>e R2Y<br>0,425                   | 0<br>batches<br>(K) = 1559 (X =<br>R2Y(cum<br>0,425                                           | Q2<br>0,422                            | Limit                               | 0,422                            | R1                         | Lterations                                       | • ** |
| Binary Pov<br>Workset<br>pe: PLS-Class(<br>Component F                                                                                                | Opt<br>(1) Ob<br>R2X<br>Cent.<br>),724                              | 0,0 0,769<br>I - M2<br>ions<br>servations (<br>R2X(cum)                                                    | 0,945<br>Title: Pl<br>(N)=240, va<br>Eigenvalu                                 | 0<br>LS odd b<br>ariables<br>re R2Y                           | 0<br>batches<br>(K) = 1559 (X =<br>R2Y(cum<br>0,425                                           | Q2                                     | Limit                               |                                  | -                          | Lerations                                        |      |
| Binary Pov<br>Workset<br>pe: PLS-Class(<br>Component F                                                                                                | Opt<br>(1) Ob<br>R2X<br>Cent.<br>),724                              | 0,0 0,769<br>I - M2<br>ions<br>servations (<br>R2X(cum)<br>0,724<br>0,958                                  | 0,945<br>Title: Pl<br>(N)=240, va<br>Eigenvalu<br>174                          | 0<br>LS odd b<br>ariables<br>e R2Y<br>0,425<br>0,406          | 0<br>batches<br>(K) = 1559 (X =<br>R2Y(cum<br>0,425                                           | Q2<br>0,422                            | Limit<br>0<br>0                     | 0,422                            | R1                         | Lterations                                       |      |
| Binary Pov<br>Workset<br>pe: PLS-Class(<br>Component F                                                                                                | Opt<br>(1) Ob<br>R2X<br>Cent.<br>),724<br>),234                     | 0,0 0,769<br>I - M2<br>ions<br>R2X(cum)<br>0,724<br>0,958<br>0,98                                          | 0,945<br>Title: Pl<br>(N)=240, va<br>Eigenvalu<br>174<br>56,2                  | 0<br>LS odd t<br>ariables<br>e R2Y<br>0,425<br>0,406<br>0,069 | 0<br>patches<br>(K) = 1559 (X =<br>R2Y(cum<br>0,425<br>0,831                                  | Q2<br>0,422<br>0,705                   | Limit<br>0<br>0<br>0                | 0,422<br>0,829                   | R1<br>R1                   | lterations<br>1<br>1                             |      |
| Binary Pov<br>Workset<br>pe: PLS-Class(<br>Component F                                                                                                | Opt<br>(1) Ob<br>R2X<br>Cent.<br>),724<br>),234<br>),0218           | 0,0 0,769<br>I - M2<br>ions<br>servations (<br>R2X(cum)<br>0,724<br>0,958<br>0,98<br>0,983                 | 0,945<br>Title: Pl<br>(N)=240, va<br>Eigenvalu<br>174<br>56,2<br>5,22          | 0<br>LS odd t<br>ariables<br>0,425<br>0,406<br>0,069<br>0,031 | 0<br>patches<br>(K) = 1559 (X =<br>R2Y(cum)<br>0,425<br>0,831<br>8 0,901                      | Q2<br>0,422<br>0,705<br>0,402          | Limit<br>0<br>0<br>0<br>0           | 0,422<br>0,829<br>0,898          | R1<br>R1<br>R1             | lterations 1 1 1 1                               |      |
| Binary Pov<br>Workset<br>pe: PLS-Class(<br>Component F<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Opt<br>(1) Ob<br>R2X<br>Cent.<br>),724<br>),234<br>),0218<br>),0026 | 0,0 0,769<br><b>I - M2</b><br>ions<br>servations (<br>R2X(cum)<br>0,724<br>0,958<br>0,98<br>0,983<br>0,987 | 0,945<br>Title: Pl<br>(N)=240, va<br>Eigenvalu<br>174<br>56,2<br>5,22<br>0,624 | 0<br>LS odd t<br>ariables<br>0,425<br>0,406<br>0,069<br>0,031 | 0<br>atches<br>(K) = 1559 (X =<br>R2Y(cum)<br>0,425<br>0,831<br>8 0,901<br>1 0,932<br>7 0,945 | Q2<br>0,422<br>0,705<br>0,402<br>0,195 | Limit<br>0<br>0<br>0<br>0<br>0<br>0 | 0,422<br>0,829<br>0,898<br>0,918 | R1<br>R1<br>R1<br>R1<br>R1 | Iterations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |



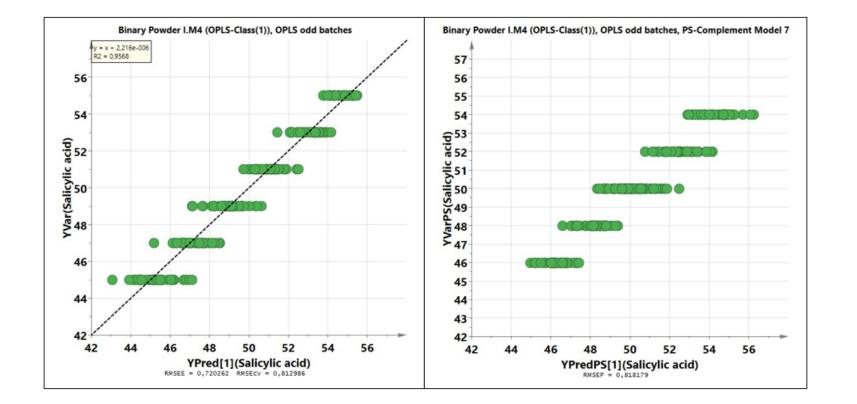
#### Rotation of Projection Towards Y


PLS

OPLS



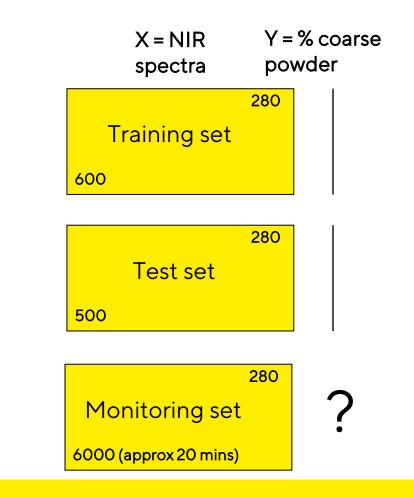



#### Interpretation of Predictive and Orthogonal Components (No Mixing)





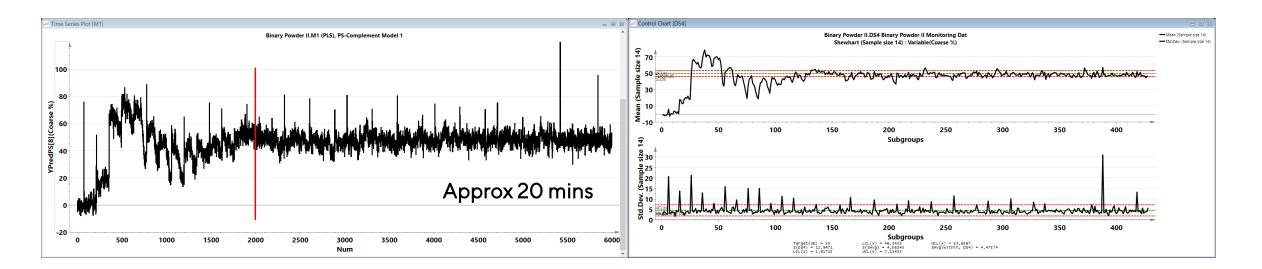
#### **Prediction For Test Set**


- Good agreement between fit and prediction measures
- RMSEE = 0.72, RMSEcv = 0.81, RMSEP = 0.82.





#### Example: Binary Powder II


- Mixing two powders with dissimilar particle sizes
  0 100% coarse powder
- Training set 6\*100 = 600 spectra
- Test set 5\*100 = 500 spectra
- Monitoring set = 6000 spectra
- Spectral range: 1082-2025 nm
   (→ 280 variables)
- Scenario: In the monitoring experiment, equal amounts of the coarse and fine powders were loaded into a vertical cone mixer with the coarse powder on top.
- Question: When is mixing complete?





#### When Is Mixing Complete?

- Mixing complete about 1/3 into the sampling period
- Effect of orbiting screw seen every 140th spectrum





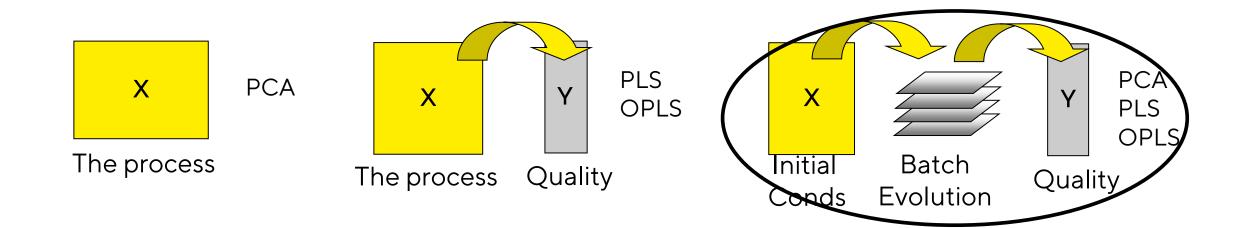
#### Batch Example: Hydrogenation Reaction

- PLS and OPLS are available for BEM and BLM
- PLS maximizes covariance between X and Y; risk is that undesired X-variability is picked up by BEM in terms of more components (more control charts to monitor)
- OPLS divides systematic SS of X in two parts, pred and orth; this may affect trajectory estimations and confidence intervals



OPLS in batch monitoring – Opens up new opportunities Nabil Souihi<sup>a</sup>, Anders Lindegren<sup>b</sup>, Lennart Eriksson<sup>b</sup>, Johan Trygg<sup>a,\*</sup> <sup>a</sup> Computational Life Science Cluster (CLic), Department of Chemistry, Umed University, Sweden




**SVIECTEVS** 

#### Multivariate Process Data

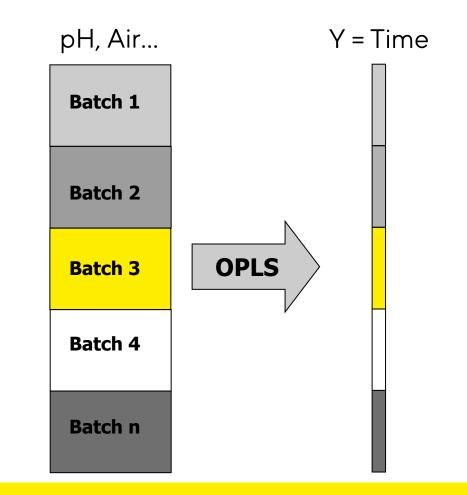
- Monitoring a process
  - Early warning of disturbances
  - Diagnostics finding "assignable causes"

- Modelling a process output
- Monitor Quality of final product

- Modelling Batch Processes
  - Majority of industrial processes
  - More complex analysis






#### Batch Data; BEM and BLM

**Batch-wise Unfolding**  Batch data has time dependency • A table of data is generated for each batch 1. Each variable is Variables measured over time transposed and aligned to make 1 row per batch **B1** 2. All batches are unfolded *x* ----> B2 lime **B**3 **B**4 Β1 B2 В3 B4



#### The Batch Evolution Model (BEM)

- Time (or maturity) is used as a Y-variable to give the model a direction
- Maturity need not be time. It could be say, for example, be Ethanol in beer brewing





#### Example: Hydrogenation Reaction

• 6 centerpoint batches, NOC batches, used for model training

- 5 additional batches used for model testing
  - 3 corners of DOE (one corner missing)
  - 2 PD, process disturbances, batches (process upsets induced)
- 87 variables, 80 spectral (UV 200-300 nm, 1st derivative) and 7 process variables
  - reactor temp, reactor pressure, gas feed, jacket-in temp, jacket-out temp, flow rate of oil, and stirrer speed

J. Gabrielsson, H. Jonsson, J. Trygg, C. Airiau, B. Schmidt, R. Escott, AlChE J. 52 (2006) 3164-3172.



#### Example: Hydrogenation Reaction (Nitrobenzene to Aniline)

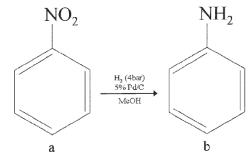
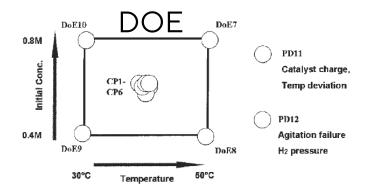




Figure 2. Reaction scheme for the conversion of Nitrobenzene (a) to Aniline (b).



#### Figure 1. Illustration of the 2<sup>2</sup> full factorial design that was implemented in the study.

 Table 1. Factor Settings for the 2<sup>2</sup> Full Factorial

 Experimental Design for the Conversion of

 Nitrobenzene to Aniline

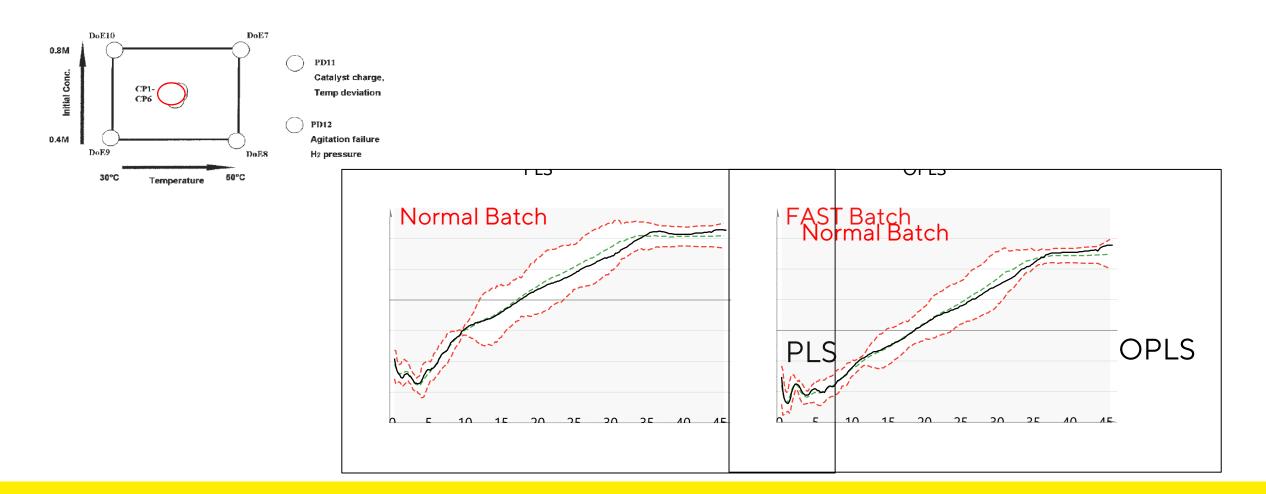
| Batch Name (abbreviation)   | Reaction<br>Temperature<br>(°C) | Initial Conc.<br>(mol/L) | Duration<br>(min) |
|-----------------------------|---------------------------------|--------------------------|-------------------|
| Center point 1 (CP1)        | 40                              | 0.6                      | 45.7              |
| Center point 2 (CP2)        | 40                              | 0.6                      | 39.1              |
| Center point 3 (CP3)        | 40                              | 0.6                      | 37.8              |
| Center point 4 (CP4)        | 40                              | 0.6                      | 37.9              |
| Center point 5 (CP5)        | 40                              | 0.6                      | 38.9              |
| Center point 6 (CP6)        | 40                              | 0.6                      | 37.3              |
| Experiment 7 (DoE7)         | 50                              | 0.8                      | 24.1              |
| Experiment 8 (DoE8)         | 50                              | 0.4                      | _                 |
| Experiment 9 (DoE9)         | 30                              | 0.4                      | 66.1              |
| Experiment 10 (DoE10)       | 30                              | 0.8                      | 45.4              |
| Process deviation 11 (PD11) | 40                              | 0.6                      | 47.6              |
| Process deviation 12 (PD12) | 40                              | 0.6                      | 33.9              |

Included also are six center points and two batches with introduced process deviations (explained in detail in Table 2). The resulting duration of each batch is given in min.

#### X data

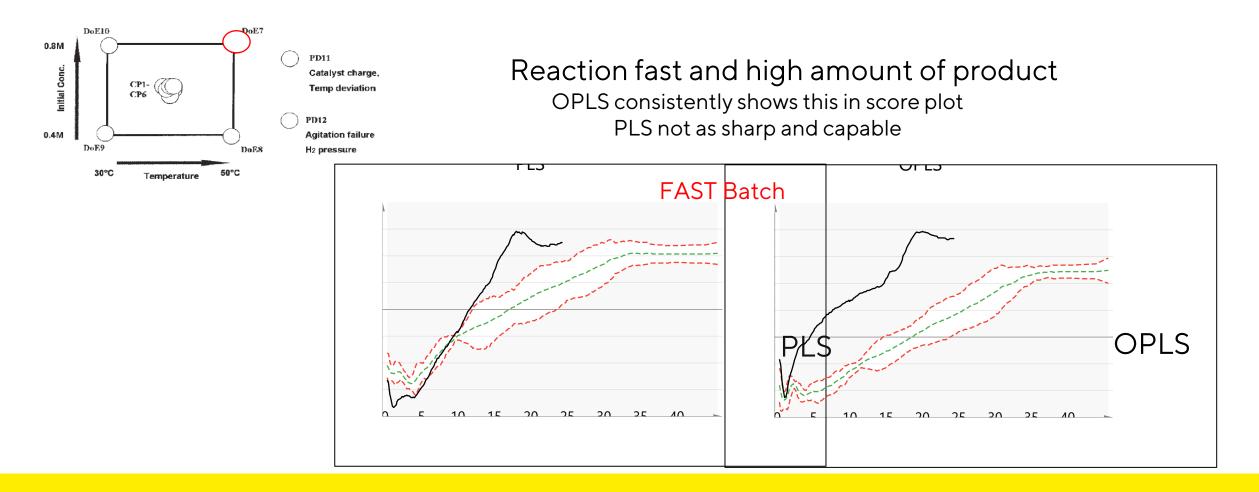
- 1st der UV data (200-300 nm)
- Process data
- 1. Reactor temperature,
- 2. Reactor pressure
- 3. gas feed
- 4-7 jacket temp and stirrer speed

#### **BEM Results**


- 3 PLS components
- 1+2 OPLS components
  - R2Xpred = 65%
  - R2Xorth = 19%,
  - Xres = 16%

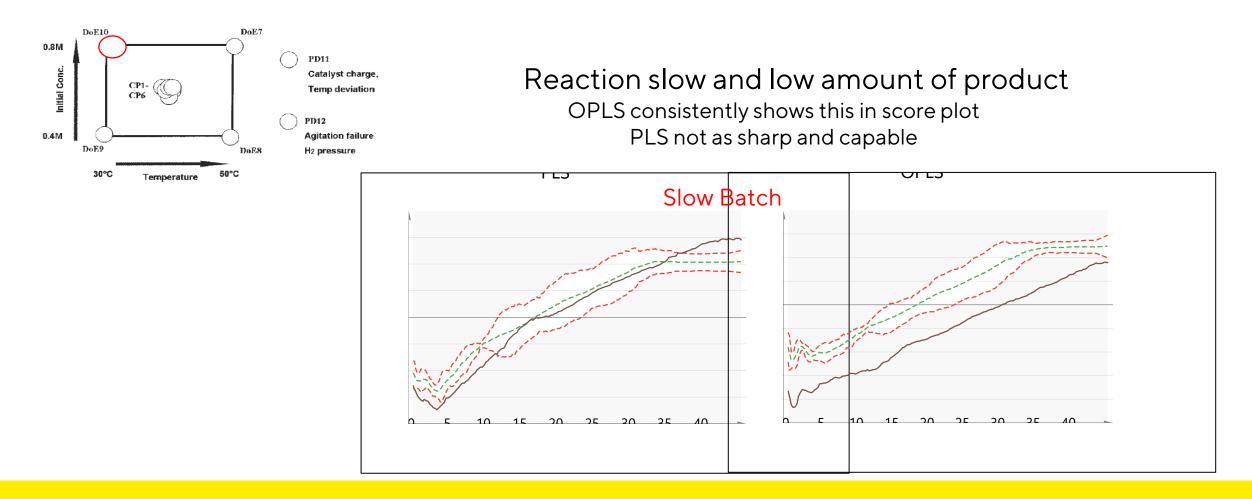
| Hydroge       | natior   | SIMCA       | 14 - M1        |          |              |         |         |         |              |            | X |
|---------------|----------|-------------|----------------|----------|--------------|---------|---------|---------|--------------|------------|---|
| Workset       | Opt      | ions        | Title: Uni     | titled   |              |         |         |         |              |            |   |
| Type: PLS Ob: | servatio | ns (N)=1188 | , variables (K | ()=92 (X | =91, Y=1), i | ncludeo | d batch | es: 6   |              |            |   |
|               |          |             |                |          |              |         |         |         |              |            |   |
| Component     | R2X      | R2X(cum)    | Eigenvalue     | R2Y      | R2Y(cum)     | Q2      | Limit   | Q2(cum) | Significance | Iterations |   |
| 0             | Cent.    |             |                |          |              |         |         |         |              |            |   |
| 1             | 0,669    | 0,669       | 60,9           | 0,93     | 0,93         | 0,93    | 0       | 0,93    | RB1          | 1          |   |
| 2             | 0,0578   | 0.727       | 5,26           | 0,0227   | 0,953        | 0,325   | 0       | 0,953   | RB1          | 1          |   |
| -             | 0,111    | 0,838       | 10,1           | 0,003    | 0,956        | 0,06    | 0       | 0,956   | RB1          | 1          |   |
| 3             |          |             |                |          |              |         |         |         |              |            |   |

| S Hydrogenation_SIMCA 14 - M2 👝 📼 🛙            |      |                            |            |         |              |         |       |         |     |          |             |              |
|------------------------------------------------|------|----------------------------|------------|---------|--------------|---------|-------|---------|-----|----------|-------------|--------------|
| Workset Options<br>Type: OPLS Observations (N) | =118 | Title: Unt<br>3, variables |            | 1, Y=1) | , included l | batches | s: 6  |         |     |          |             |              |
| Component                                      | R2X  | R2X(cum)                   | Eigenvalue | R2      | R2(cum)      | Q2      | Limit | Q2(cum) | R2Y | R2Y(cum) | EigenvalueY | Significance |
| Model                                          |      | 0,838                      |            |         | 0,956        |         |       | 0,956   |     | 1        |             |              |
| Predictive                                     | ſ    | 0,65                       |            |         | 0,956        |         |       | 0,956   |     | 1        |             |              |
| L P1                                           | 0,65 | 0,05                       | 59,2       | 0,956   | 0,956        | 0,956   | 0,01  | 0,956   | 1   | 1        | 1           | R1           |
| Orthogonal in X(OP                             |      | 0,188                      |            |         | 0            |         |       |         |     |          |             |              |
| - 01                                           | 0,0  | 0,0747                     | 6,8        | 0       | 0            |         |       |         |     |          |             | R1           |
| L 02                                           | 0,1  | 0,188                      | 10,3       | 0       | 0            |         |       |         |     |          |             | NS           |
|                                                |      |                            |            |         |              |         |       |         |     |          |             |              |




#### Control Charts Representing NOC

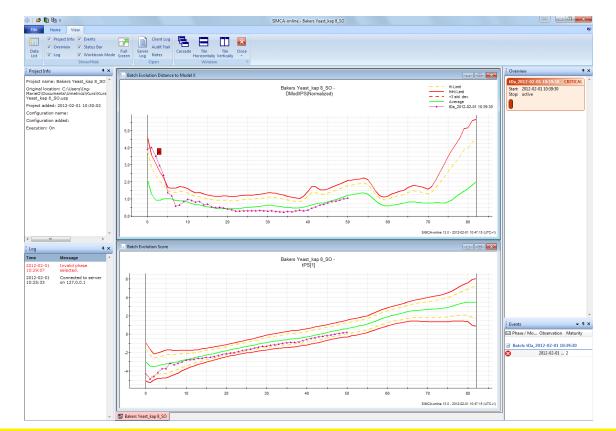





#### Prediction of Batch DOE7 (tps1) - High Temp / High Initial Conc.






#### Prediction of Batch DOE10 (tps1) - Low Temp / High Initial Conc.





#### SIMCA<sup>®</sup>-online

• Once the model is created and validated it is ready for online deployment



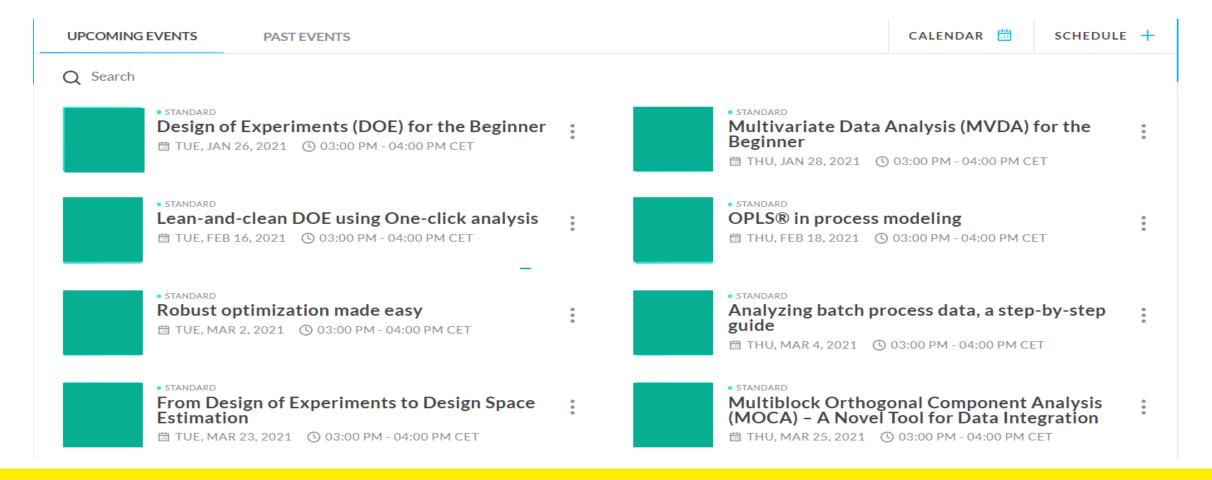


### Demo

CONNECTION ANALYSIS DATA SEARCHING VERIFICATION

60000

50000




#### Conclusions OPLS

- A single-Y PLS and a single-Y OPLS model with the same number of components are mathematically equivalent.
- Predictions, residuals, R2, R2 per variable, DModX, etc, are the same for PLS and OPLS.
- Loadings and scores are different for PLS compared to OPLS.
- Interpretation is easier with OPLS, since the user has a clearer understanding of what the different components mean



# Upcoming Webinars (https://www.sartorius.com/en/company/exhibition-conferences)





#### Launch Webinar – SIMCA® 17

https://www.sartorius.com/en/company/exhibition-conferences

|           | Webinar                                                                               |               |
|-----------|---------------------------------------------------------------------------------------|---------------|
| 22 Feb 21 | Launch Webinar - SIMCA® 17: Unlock the Full<br>Potential of Spectroscopy Using SIMCA! | Link to Event |

